viernes, 3 de junio de 2016

SISTEMAS DE ECUACIONES

Método de sustitución

1 Se despeja una incógnita en una de las ecuaciones.
2 Se sustituye la expresión de esta incógnita en la otra ecuación, obteniendo un ecuación con una sola incógnita.
3 Se resuelve la ecuación.
4 El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada.
5 Los dos valores obtenidos constituyen la solución del sistema.

Ejemplosistema

1 Despejamos una de las incógnitas en una de las dos ecuaciones. Elegimos la incógnita que tenga el coeficiente más bajo.
despejar
2 Sustituimos en la otra ecuación la variable x, por el valor anterior:
ecuación
3 Resolvemos la ecuación obtenida:
ecuación ecuación
4 Sustituimos el valor obtenido en la variable despejada.
solución
5 Solución
solución

Método de igualación

1 Se despeja la misma incógnita en ambas ecuaciones.
2 Se igualan las expresiones, con lo que obtenemos una ecuación con una incógnita.
3 Se resuelve la ecuación.
4 El valor obtenido se sustituye en cualquiera de las dos expresiones en las que aparecía despejada la otra incógnita.
5 Los dos valores obtenidos constituyen la solución del sistema.

Ejemplo

sistema
1 Despejamos, por ejemplo, la incógnita x de la primera y segunda ecuación:
despejar
despejar
2 Igualamos ambas expresiones:
ecuación
3 Resolvemos la ecuación:
ecuación
ecuación
4 Sustituimos el valor de y, en una de las dos expresiones en las que tenemos despejada la x:
solución
5 Solución:
solución


Método de reducción

1 Se preparan las dos ecuaciones, multiplicándolas por los números que convenga.
2 La restamos, y desaparece una de las incógnitas.
3 Se resuelve la ecuación resultante.
4 El valor obtenido se sustituye en una de las ecuaciones iniciales y se resuelve.
5 Los dos valores obtenidos constituyen la solución del sistema.

Creado por: Sagrario Sarahí Reyes Domínguez.

No hay comentarios:

Publicar un comentario